Classification and its application to drug-target interaction prediction

نویسندگان

  • Jian-Ping Mei
  • Chee Keong Kwoh
  • Peng Yang
  • Xiaoli Li
چکیده

Classification is one of the most popular and widely used supervised learning tasks, which categorizes objects into predefined classes based on known knowledge. Classification has been an important research topic in machine learning and data mining. Different classification methods have been proposed and applied to deal with various real-world problems. Unlike unsupervised learning such as clustering, a classifier is typically trained with labeled data before being used to make prediction, and usually achieves higher accuracy than unsupervised one. In this chapter, we first define classification and then review several representative methods. After that, we study in details the application of classification to a critical problem in drug discovery, i.e., drug-target prediction, due to the challenges in predicting possible interactions between drugs and targets.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Toward more realistic drug–target interaction predictions

A number of supervised machine learning models have recently been introduced for the prediction of drug-target interactions based on chemical structure and genomic sequence information. Although these models could offer improved means for many network pharmacology applications, such as repositioning of drugs for new therapeutic uses, the prediction models are often being constructed and evaluat...

متن کامل

Classification and its applications for drug-target interaction identification

Classification is one of the most popular and widely used supervised learning tasks, which categorizes objects into predefined classes based on known knowledge. Classification has been an important research topic in machine learning and data mining. Different classification methods have been proposed and applied to deal with various real-world problems. Unlike unsupervised learning such as clus...

متن کامل

O-3: Drug Repositioning by Merging Gene Expression Data Analysis and Cheminformatics Target Prediction Approaches

The transcriptional responses of drug treatments combined with a protein target prediction algorithm was utilised to associate compounds to biological genomic space. This enabled us to predict efficacy of compounds in cMap and LINCS against 181 databases of diseases extracted from GEO. 18/30 of top drugs predicted for leukemia (e.g. Leflunomide and Etoposide) and breast cancer (e.g. Tamoxifen a...

متن کامل

Application of soil properties, auxiliary parameters, and their combination for prediction of soil classes using decision tree model

Soil classification systems are very useful for a simple and fast summarization of soil properties. These systems indicate the method for data summarization and facilitate connections among researchers, engineers, and other users. One of the practical systems for soil classification is Soil Taxonomy (ST). As determining  soil classes for an  entire area is expensive, time-consuming, and almost ...

متن کامل

Supervised prediction of drug-target interactions by ensemble learning

Drug-target interaction (DTI) provides novel insights about the genomic drug discovery. The wet experiments of identifying DTIs are time-consuming and costly. Recently, the increase of available data provides the opportunity to the development of computational methods. Although many computational methods have been proposed (such as classification-based methods, graph-based methods and network-b...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • CoRR

دوره abs/1502.04469  شماره 

صفحات  -

تاریخ انتشار 2015